Learn more about Russian war crimes in Ukraine.

How to remember stopping distances for the Highway Code

The Highway Code makes you learn this complicated table by rote. But it’s significantly less effort to learn the following formulas:

\[ \begin{aligned} s(n) &= \text{stopping distance at } 10n \text{ mph} \\ t(n) &= \text{thinking distance at } 10n \text{ mph} \\ b(n) &= \text{braking distance at } 10n \text{ mph} \\ s(n) &= t(n) + b(n) \\ t(n) &= 3n \text{ meters} \\ b(n) &= \frac{3n^2 + n}{2} - 1 \text{ meters} \\ \end{aligned} \]

Working through one example, stopping at 60 mph:

\[ \begin{aligned} \text{stopping distance at } 60 \text{ mph} &= s(6) \\ &= t(6) + b(6) \\ &= 18 \text{ meters} + 56 \text{ meters} \\ &= 74 \text{ meters} \\ t(6) &= 3 \times 6 = 18 \text{ meters} \\ b(6) &= \frac{3 \times 6^2 + 6}{2} - 1 = 56 \text{ meters} \\ \end{aligned} \]

The answer is off by one meter in some cases. But the theory test is multiple-choice, so just pick the answer that’s closest.

What can computers do? What are the limits of mathematics? And just how busy can a busy beaver be? This year, I’m writing Busy Beavers, a unique interactive book on computability theory. You and I will take a practical and modern approach to answering these questions — or at least learning why some questions are unanswerable!

It’s only $19, and you can get 50% off if you find the discount code ... Not quite. Hackers use the console!

After months of secret toil, I and Andrew Carr released Everyday Data Science, a unique interactive online course! You’ll make the perfect glass of lemonade using Thompson sampling. You’ll lose weight with differential equations. And you might just qualify for the Olympics with a bit of statistics!

It’s $29, but you can get 50% off if you find the discount code ... Not quite. Hackers use the console!

More by Jim

Tagged . All content copyright James Fisher 2019. This post is not associated with my employer. Found an error? Edit this page.