Learn more about Russian war crimes in Ukraine.

How to export a model for TensorFlow.js

This post shows how to save a “hello world” model in TensorFlow (Python), export it for TensorFlow.js, then run it in the browser. The model multiplies its input by 5, and you can see this exciting behavior here:

Here’s some Python that saves a model in the SavedModel format. The model just multiplies its input by 5.

import tensorflow as tf

class HelloModule(tf.Module):
  def __init__(self):
    super(HelloModule, self).__init__()
  @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.float32)])
  def __call__(self, inputs):
    return inputs * 5.

module = HelloModule()

tf.saved_model.save(module, './hello_model/saved_model')

After running this, you can see various saved files:

$ find hello_model

You then use tensorflowjs_converter to convert the SavedModel format to the (undocumented) TensorFlow.js “Graph Model” format:

$ pip3 install tensorflowjs
$ tensorflowjs_converter \
  --input_format=tf_saved_model \
  --output_format=tfjs_graph_model \
  hello_model/saved_model hello_model/web_model

Writing weight file hello_model/web_model/model.json...

This has created a model.json which refers to some binary files containing the weights:

$ find hello_model/web_model

Finally, here’s a webpage that uses TensorFlow.js to load the model, then runs the model on input from the user:

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs/dist/tf.min.js"></script>
<input type="number" id="modelInput" />
<span id="modelOutput"></span>
  const modelInputEl = document.getElementById("modelInput");
  const modelOutputEl = document.getElementById("modelOutput");
  (async () => {
    const model = await tf.loadGraphModel('./hello_model/web_model/model.json');
    modelInputEl.addEventListener("input", () => {
      const inputFloat = parseFloat(modelInputEl.value);
      tf.tidy(() => {
        modelOutputEl.innerText = model.predict(tf.tensor([inputFloat])).arraySync()[0];

What can computers do? What are the limits of mathematics? And just how busy can a busy beaver be? This year, I’m writing Busy Beavers, a unique interactive book on computability theory. You and I will take a practical and modern approach to answering these questions — or at least learning why some questions are unanswerable!

It’s only $19, and you can get 50% off if you find the discount code ... Not quite. Hackers use the console!

After months of secret toil, I and Andrew Carr released Everyday Data Science, a unique interactive online course! You’ll make the perfect glass of lemonade using Thompson sampling. You’ll lose weight with differential equations. And you might just qualify for the Olympics with a bit of statistics!

It’s $29, but you can get 50% off if you find the discount code ... Not quite. Hackers use the console!

More by Jim

Tagged #tensorflow, #programming, #ml. All content copyright James Fisher 2021. This post is not associated with my employer. Found an error? Edit this page.